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Hermir is a collection of MATLAB and MEX routines which implements methods for the synthesis
of stationary multivariate Gaussian processes. The methodology is described in detail in [2, 3].
Hermir is freeware and the most current version is available for download at [1]. Feel welcome to
send comments and questions to hannes.helgason@ee.kth.se.

1 Organization

This is document is organized into the following sections:

2. Introduction – overview of the synthesis problems the toolbox addresses.
3. Getting started – installation instructions and overview of directories.
4. Covariance models – overview of covariance models implemented in toolbox.
5. Non-Gaussian marginals – configuring marginal distributions in Hermir.
6. Demos – examples demonstrating the toolbox.

2 Introduction

The software’s purpose is to provide routines for numerically synthesizing P -variate second-order
stationary series

Y [n] = (Y1[n], . . . , YP [n])T , n = 0, . . . , N − 1, (1)

with covariance structure
RY [n] = EY [0]Y [n]T − EY [0]EY [n]T .

Hermir offers two approaches of constructing non-Gaussian series (see Sections 2.1–2.2). See
Section 2.3 for two synthesis problems Hermir can be used for.

2.1 Component-wise transformations of Gaussian multivariate series

The synthesis procedures in Hermir focus on particular forms of non-Gaussian series which are
based on non-linear memoryless transforms

Yp[n] = fp(Xp[n]), (2)

with X[n] = (X1[n], . . . , XP [n])T a multivariate stationary Gaussian series with mean zero and
covariance structure RX [n] = EX[0]X[n]T .

As explained in [3], the covariance structure RX [n] of the Gaussian series X[n] and the covariance
structure RY [n] of the non-Gaussian series Y [n] can be related through the Hermite expansions of
fp, p = 1, . . . , P . The relationship is of the form

RY [n] = G(RX [n]), (3)

where the mapping G : RP×P → RP×P depends on fp, p = 1, . . . , P (and is independent of the
time index n).
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Hermir offers a way to work numerically with relationships of the form (3) for user-defined functions
fp. The software both allows the user to calculate the mapping RY [n] = G(RX [n]), where RX [n]
is given, and provides ways for inverting relationship (3) by numerically calculating

RX [n] = G−1(RY [n]); (4)

that is, RY [n] is given and one wants to find RX [n] such that (3) hold. This is explained further
with MATLAB code examples in Section 5.

2.2 Transformations of independent copies of Gaussian multivariate series

Hermir also considers the case where the components of Y [n] = (Y1[n], . . . , YP [n])T are taken of
the form

Yp[n] = fp(X
(1)
p [n], . . . , X(K)

p [n]), (5)

where X(k)[n] = (X
(k)
1 [n], . . . , X

(k)
P [n])T , k = 1, . . . ,K, are i.i.d. copies of a stationary Gaussian

series X[n] each with the same covariance structure RX [n]. This type of construction is of interest
since it offers synthesis of many marginals of practical use using simple formulas with nice analytic
properties.

Here again one seeks a way to relate the Gaussian covariance structure RX [n] with the non-Gaussian
covariance structure RY [n]. As discussed in [3], one can here also relate the covariances using an
expression of the form (3) (this time using multivariate Hermite expansions).

In many practical cases the covariances can be related using simple analytic expressions, allowing
one to easily evaluate both the forward mapping RY [n] = G(RX [n]) and the backward mapping
RX [n] = G−1(RY [n]). In Hermir one can find a list of constructions for popular marginals having
such “exact” covariance mappings; the list of marginals along with MATLAB code examples are
given in Section 5. (See [3] for details about these constructions.)

2.3 Synthesis problems covered by Hermir

Hermir can be used in the following synthesis problems:

• Synthesis of multivariate Gaussian series: Hermir offers a fast way, using circulant ma-
trix embedding techniques and FFT algorithms, to synthesize stationary multivariate Gaus-
sian series (i.e., the case when fp(x) = x).

• Forward Problem: Prescribe transforms fp, p = 1, . . . , P , and covariance structure RX [n]
for underlying Gaussian series X[n]. Synthesize Y [n] and calculate the resulting covariance
RY [n].

• Backward Problem: Prescribe targeted covariance structure RY [n] and transforms fp,
p = 1, . . . , P . Find RX [n] such that Y [n] has covariance RY [n].
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Remark for Backward Problem: Only prescribing marginal distributions and a covariance
structure will, in general, not uniquely define the series Y ; that is, more than one series can have
the same prescribed marginal distributions and second-order moments. Another important point
to make is that not all joint choices of marginal distributions and covariance structures are possible.
See [3] for detailed discussion about these two issues.

In cases where prescribed covariance structure RY [n] cannot be reached, Hermir can be used to
find a covariance structure which approximates the targeted covariance in a certain optimal fashion
(see [3]). This approximating covariance can then be used for synthesis.

3 Getting started

3.1 Installation instructions

1. Requirements: The software requirements for Hermir are

• tar and gunzip to install the package on Unix-based systems, or zip to install the
package on Windows.

• MATLAB – the code has been tested on MATLAB version 7.10 but should also work
on some older versions.

2. Hermir is distributed as a compressed tar or zip file. To install,

(a) Download the compressed archive.

(b) Uncompress it at the desired location:

gunzip -c Hermir0_9.tar.gz | tar xfv -

or use zip if installing under Windows.

This will create a directory tree rooted at Hermir0 9 containing the source code.

3. Before using Hermir, the MATLAB paths must be set up. Here we explain two ways:

(a) Starting Hermir on demand:
Each time after starting MATLAB, run HermirPath.m from the MATLAB command
prompt. You have to be located in the directory Hermir directory for this to work
unless you edit the file HermirPath.m and change the variable MYHERMIR to the full path
of the directory where Hermir is installed.

(b) Permanently adding Hermir to MATLAB path:
To permanently add the Hermir directories to your MATLABPATH you can edit the file
startup.m; this file (if it exists), should be located in the default or current startup
folder, which is where MATLAB first looks for it. For more information regarding
startup.m consult MATLAB’s help documentation.

Once you have located or created a startup.m file, follow the following steps:

i. Edit the file HermirPath.m and change the variable MYHERMIR to the directory where
Hermir is installed
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ii. Copy HermirPath.m to the same folder as the file ’startup.m’

iii. Add a line with the command ‘HermirPath’ to the file startup.m

4. To test that Hermir is installed properly, start MATLAB, and run the demo script

DemoCovarMAR1

If Hermir directories are not permanently added to your MATLABPATH, go into the Her-
mir root directory in your MATLAB command prompt and set up the paths by executing

HermirPath

3.2 Directory structure and ingredients

The routines in Hermir are organized into several folders. Here is a list of the main folders with
rough descriptions of their ingredients:

GaussGen – routines for the generation of stationary multivariate Gaussian series.
NonGaussGen – routines for the generation of stationary multivariate non-Gaussian series.
CovarGen – routines for generating covariance structures (see Section 4).
Demo – sample scripts demonstrating the code (see Section 6).
Documentation – documentation for Hermir, along with copyright and warranty notices.
Utilities – various utility routines.

4 Covariance models implemented in Hermir

The folder CovarGen stores the following routines for generating the several different covariance
structures:

CovarExpDecay.m – Bivariate geometrically decaying covariance.
CovarFARIMA0D0.m – Multivariate FARIMA(0, D, 0) covariance.
CovarMAR1.m – Multivariate AR(1) covariance.
CovarMfGn.m – Multivariate fractional Gaussian noise covariance.

These covariances were given as examples and discussed in [2]. Short descriptions are given below;
see also the documentation given in the MATLAB functions, for example, by using the ‘help’
command from the MATLAB command prompt (e.g., run ‘help CovarMAR1’ to get documentation
for CovarMAR1.m).

4.1 CovarExpDecay.m: Bivariate geometrically decaying covariances

This function generates the covariance structure given by

R[n] =

(
ϕn1 cϕn3
cϕn3 ϕn2

)
,
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where n ≥ 0, 0 < ϕ1, ϕ2 < 1 and c, ϕ3 ∈ R. As explained in [2], synthesis using the circulant matrix
embedding method described therein and implemented in Hermir should work at least when the
parameters satisfy the conditions

0 ≤ c ≤ 1, |ϕ3| ≤ min(ϕ1, ϕ2),

and

1− 1−max(ϕ1, ϕ2)√
c

≤ ϕ3 ≤ min(ϕ1, ϕ2).

Parameters: The covariance structure in CovarMAR1.m is configured by ϕ1, ϕ2, ϕ3, and c.

MATLAB example: See DemoCovarExpDecay.m in the Demo folder.

4.2 CovarFARIMA0D0.m: Multivariate FARIMA(0, D, 0) Series

This function generates the covariance structure for FARIMA(0, D, 0) series X[n] defined by

(I −B)DX[n] = ε[n],

where B is the backshift operator. The innovations ε[n] are i.i.d. Gaussian vectors of length P with
mean zero and covariance matrix Σε. Assuming that D is diagonalizable as D = WΛW−1, with
diagonal Λ = diag(d1, . . . , dP ), |dk| < 1/2, one can write the series as

X[n] = WXΛ[n],

where XΛ[n] is a FARIMA(0,Λ, 0) series with the innovations η[n] having the covariance

Ση = (Ση,p,p′)1≤p,p′≤P = W−1Σε(W
−1)∗,

where A∗ stands for the conjugate-transpose of a matrix A. The covariance of X[n] is given by

R[n] = WRΛ[n]W ∗,

where n ≥ 0 and the entries of RΛ[n], the covariance of XΛ[n], are

RΛ[n]p,p′ = Ση,p,p′
(−1)nΓ(1− dp − dp′)

Γ(1 + n− dp′)Γ(1− n− dp)
,

where Γ(·) stands for the gamma-function and z stands for the complex-conjugate of a complex
number z. (For further details about this covariance model, see [2] and references therein.)

Parameters: The parameters configuring the covariance structure generated by CovarFARIMA0D0.m

correspond to the three parameters W , Λ = diag(d1, . . . , dP ), and Σε above. Recall that D =
WΛW−1 and Σε is the covariance matrix for the innovations of the FARIMA(0, D, 0) series.

MATLAB example: See DemoCovarFARIMA0D0.m in the Demo folder.
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4.3 CovarMAR1.m: Multivariate AR(1) Series

This function generates covariance structure for multivariate series of the form

X[n] = ΦX[n− 1] + ε[n], n ∈ Z,

where Φ is a P × P matrix whose eigenvalues are smaller than 1 in absolute value, and ε[n] are
i.i.d. Gaussian vectors of length P with mean zero and covariance Eε[n]ε[n]T = Σε.

Parameters: The parameters configuring the covariance structure generated by CovarMAR1.m

are Φ and Σε.

MATLAB example: See DemoCovarMAR1.m in the Demo folder.

4.4 CovarMfGn.m: Multivariate Fractional Gaussian Noise (FGN)

This function generates the following multivariate FGN covariance structure

R[n] =
1

2

(
|n+ 1|HΣ|n+ 1|H∗ + |n− 1|HΣ|n− 1|H∗ − 2|n|HΣ|n|H∗

)
,

with H = WΛW−1, with diagonal Λ = diag(h1, . . . , hP ), 0 < hk < 1. The matrix Σ is given by

Σ = 8WΣ0W
∗,

with the entries Σ0,p,p′ of Σ0 given by

Σ0,p,p′ = −
cp,p′

2
Γ(−hp − hp′) cos

(
(hp + hp′)π

2

)
,

where C = (cp,p′)1≤p,p′≤P = W−1AA∗(W−1)∗, with A a real-valued P × P matrix.

Parameters: The parameters configuring the covariance structure generated by CovarMfGn.m

correspond to the three parameters W , Λ, and A above.

MATLAB example: See DemoCovarMfGn.m in the Demo folder.

5 Working with non-Gaussian marginals in Hermir

Here we give details about how to configure marginal distributions in Hermir based on the two ways
of synthesizing non-Gaussian series Y [n] discussed in Sections 2.1–2.2. The folder NonGaussGen

stores MATLAB routines for working with non-Gaussian marginals; some of the most relevant are:

• GenUnivarNonGaussUsingExactMap.m:
For generating univariate stationary non-Gaussian series for a list of cases where one has
analytic formulas for covariance mappings. See Section 5.1.
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• GenMVnGaussUsingExactMap.m:
For generating multivariate stationary non-Gaussian series for a list of cases where one has
analytic formulas for covariance mappings. See Section 5.1.

• MapAutoCovar.m, MapCovar.m:
Functions for calculating mapping between non-Gaussian and Gaussian covariances for the
list of transformations given in Section 5.1. MapAutoCovar.m is used by
GenUnivarNonGaussUsingExactMap.m and MapCovar.m is used by
GenMVnGaussUsingExactMap.m.

• GenUnivarNonGaussUsingHermite.m:
For generating univariate stationary non-Gaussian series using Hermite expansions.

• GenMVnGaussUsingHermite:
For generating multivariate stationary non-Gaussian series using Hermite expansions.

5.1 Exact covariance mappings

Here we list a collection of marginals which can be easily reached using construction (5) in Sec-
tion 2.2. We consider here two families of transforms for reaching important marginals. One
transform is of the type

fp(x1, . . . , xK) =
K∑
k=1

bkx
2
k,

where (bk) is a collection of deterministic scalars; see Table 1 for a list of popular marginals that
can be reached this way.

Table 1: Important marginals resulting from fp(x) =
∑K

k=1 bkx
2
k.

Marginal Type Parameter Values

Exponential distribution
with mean a > 0

K = 2, b1 = b2 = a/2

Laplace(0, a) distribution
with zero mean and variance 2a2 K = 4,

b1 = b3 = a/2,
b2 = b4 = −a/2

Chi-square distribution
with ν degrees of freedom

K = ν, bk = 1,∀k

Erlang(α, β) distribution,
i.e., sum of α exponential variables,
each with mean β > 0

K = 2α, bk = β/2,∀k

The other family contains transforms of the type

fp(x1, . . . , xK) = exp

(
K∑
k=1

bkx
2
k

)
,
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where (bk) is a collection of deterministic scalars; see Table 2 for a list of popular marginals that
can be reached this way.

Table 2: Important marginals resulting from fp(x) = exp(
∑K

k=1 bkx
2
k).

Marginal Type Parameter Values

Pareto distibution
with minimum 1 and index α > 0

K = 2, b1 = b2 = 1
2α

Uniform(0, 1) distibution K = 2, b1 = b2 = −1/2

If the marginals of all the components Yp, p = 1, . . . , P , are the same, that is,

f1 = · · · = fP ,

the transforms in Tables 1–2 allow one to have simple analytic expressions for calculating both the
forward covariance mapping (3)

RY [n] = G(RX [n]),

and the backward covariance mapping (4)

RX [n] = G−1(RY [n]).

MATLAB code: The most relevant MATLAB functions in Hermir related to the transforma-
tions in Tables 1–2 are located in the folder NonGaussGen. These are the functions:

• GenUnivarNonGaussUsingExactMap.m:
For generating univariate stationary non-Gaussian series.

• GenMVnGaussUsingExactMap.m:
For generating multivariate stationary non-Gaussian series.

• MapAutoCovar.m, MapCovar.m:
Function for calculating mapping between non-Gaussian and Gaussian covariances.

For a demonstration, see DemoGenUnivarNonGauss.m located in the Demo folder.

5.2 Standard transformation for reaching a prescribed marginal distribution

Consider the case where for the pth coordinate in the series (1) one targets a marginal with a cdf
Fp; that is, for each n,

Yp[n] ∼ Fp.

With the construction Yp[n] = fp(Xp[n]) from (2) used in Hermir, there are infinitely many
possibilities of transformations fp which can achieve this (this is discussed in [3]). One natural
choice for targeting the cdf Fp is

fp(x) = F−1
p (Φ(x)), where Φ is the cdf for N (0, 1). (6)
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In many cases MATLAB provides a very compact way of defining these type of transformations
using function handles (see MATLAB documentation). For example, if one is targeting a χ2

1

marginal, the following MATLAB code lines will return a function handle in the variable funch:

v = 1; % number of degrees of freedom

funch = @(x) chi2inv(normcdf(x),v);

Then one can simply use the variable funch as any other MATLAB function; here is an example
from the MATLAB command prompt:

>> funch(1)

ans =

1.9870

To define function handles for general χ2
ν distributions, the variable v above has just to be set to

the number of degrees of freedom ν. This compact way of using inline function handles for defining
transformations of the type (6) in MATLAB, can be used if MATLAB function for the inverse cdf
F−1
p is available.

6 Demos

6.1 Multivariate Gaussian synthesis

The functions most relevant for synthesis of multivariate Gaussian series are in the folder GaussGen.
For the synthesis of bivariate stationary Gaussian series, one can use the function GenBivarGauss.m

as in the following MATLAB example, built on file DemoCovarMAR1.m:

% Set requested length of synthesized series

N = 2^10+1;

% Generate MAR(1) covariance structure

Phi = [0.8 1;0 0.2]; Sigmae = eye(2);

R = CovarMAR1(N,Phi,Sigmae);

% Generate bivariate Gaussian series

[X1,X2] = GenBivarGauss(R,N);

This example will synthesize bivariate series X[n] = (X1[n], X2[n])T , n = 0, . . . , N − 1, with mul-
tivariate AR(1) covariance structure configured by the parameters Phi and Sigmae. The variable
X1 stores a realization of the component X1[n] and X2 stores a realization of the component X2[n];
both variables are vectors of length N .

An alternative (and slower) way of doing this is by using the more general function GenMultivarGauss.m

which can be used when the number of components P is greater than or equal to 2. In the above
example, this function can be used by replacing ‘[X1,X2] = GenBivarGauss(R,N)’ by

X = GenMultivarGauss(R,N);

The variable X stores a realization of the componentX1[n] in the row vector X(1,:) and a realization
of the component X2[n] in the row vector X(2,:).
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6.2 Univariate non-Gaussian synthesis

For a demonstration for synthesis univariate non-Gaussian series based on the transformations
given in Section 5, see DemoGenUnivarNonGauss.m in the Demo folder.

Documented demonstrations related to synthesis of univariate non-Gaussian series based on Her-
mite expansions are given in DemoGenUnivarNonGauss.m, DemoGenUnivarHermiteDetailed.m, and
DemoCovarSequence.m.

6.3 Multivariate non-Gaussian synthesis

For a demonstration for synthesis univariate non-Gaussian series based on the transformations
given in Section 5, see DemoGenMVnGcovmap.m in the Demo folder.

For documented demonstrations related to synthesis of multivariate non-Gaussian series based on
Hermite expansions, see DemoMonteCarloHermite.m.

6.4 Monte Carlo simulations

In Monte Carlo simulations, one only needs to do the initialization step in the synthesis proce-
dures once for every choice of prescribed covariance and marginal. This initialization step involves
inversion of the covariance relationship (i.e., solve (4) numerically) and a call to the function
InitStepMultivarGaussBestApprox.m or InitMVnGaussUsingHermite.m. In the Demo folder one
can find documented demonstrations showing how one can decrease the cost of generating realiza-
tions for Monte Carlo simulations by doing this initialization only once. See the following MATLAB
scripts:

• DemoMonteCarloHermite1D.m:
Monte Carlo simulations using multivariate stationary non-Gaussian series based on Hermite
expansion construction.

• DemoMonteCarloHermite.m:
Monte Carlo simulations using multivariate stationary non-Gaussian series based on Hermite
expansion construction.

• DemoMonteCarloExactMap1D.m:
Monte Carlo simulation using univariate non-Gaussian series based on exact covariance map-
ping.

• DemoMonteCarloExactMap.m:
Monte Carlo simulation using multivariate non-Gaussian series based on exact covariance
mapping.
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8 Copyright and warranty

Hermir is copyrighted material. There is no warranty attached to Hermir. For copying permis-
sions and warranty notice, see the documents COPYING.txt and WARRANTY.txt located in the folder
Documentation in the Hermir distribution.
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